
Operating Systems 2016/17
Assignment 8

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, December 19th, 2016 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will dive into the basics of kernel synchronization and take a
look at deadlocks.

T-Question 8.1: Kernel Synchronization

a. On a multi-processor system, when must local interrupts be disabled for kernel
spinlocks? 1 T-pt

b. Why is disabling interrupts a privileged instruction? 1 T-pt

T-Question 8.2: Deadlocks

a. Enumerate and explain the 4 necessary conditions for a deadlock. 2 T-pt

b. How can periodic process snapshots be used to recover from deadlocks? What is a
major disadvantage of this method? 2 T-pt

T-Question 8.3: Resource Allocation Graph

R1

P1

R2

P2

R3

P3

P4

R4

a. Describe the situation depicted in the resource allocation graph. 2 T-pt

b. Has a deadlock occurred in the above situation? Why, or why not? 1 T-pt

c. What changes if P1 also requests R3? 1 T-pt

1

P-Question 8.1: Multi Mutex

Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file multi mutex.c.

To prevent deadlocks one of the 4 necessary deadlock conditions must be broken.
Two methods to achieve this are:

(a) Acquire multiple locks ’atomically’, that is acquire all or none.

(b) Assign each lock a fixed number and acquire the locks only in a specific order.

In this question you will write a mutex wrapper that locks multiple pthread mute-
xes using the above methods.

a. Write a function that unlocks all pthread mutexes in the supplied mutexv array. The
number of mutexes is given in mutexc. The function should return 0 on success,
-1 otherwise. 1 P-pt

int multi_mutex_unlock(pthread_mutex_t **mutexv, int mutexc);

b. Write a function that uses approach (a) to avoid deadlocks and tries to lock all of the
supplied mutexes, or none, if one of the mutexes cannot be acquired. That is, on
failure, the function should release all previously acquired mutexes. The function
should return 0 on success, -1 otherwise. 2 P-pt

int multi_mutex_trylock(pthread_mutex_t **mutexv, int mutexc);

c. Write a function that uses approach (b) to avoid deadlocks. Acquire the mutexes in
ascending order based on their addresses in memory. The function should return
0 on success, -1 otherwise. 2 P-pt

int multi_mutex_lock(pthread_mutex_t **mutexv, int mutexc);

2

P-Question 8.2: Interrupt-based Synchronization
Download the template p2 for this assignment from ILIAS. You may only modify
and upload the file priority interrupts.c.

On a single-processor system, synchronization in the kernel may be accomplished
by disabling all interrupts. An optimization of this approach is to disable only a
subset of interrupts by assigning each interrupt a priority level p ∈ [1,#Interrupts]
and obeying a set of rules:

(a) The interrupt handler Hp for priority p may access data shared with the inter-
rupt handlers [H1, Hp−1].

(b) Executing Hp will disable the interrupt for level p.
(c) Disabling the interrupt for level p will also disable the interrupts for the levels

[1, p− 1].
(d) The interrupt request level (IRQL) denotes the highest disabled interrupt priority

level. Higher levels are activated!
(e) Kernel code that accesses data shared with Hp must raise the IRQL to p if the

current level is lower.
(f) When no interrupts are disabled the IRQL is 0.

With this technique high priority interrupts (e.g., reception of a network packet)
can still interrupt the kernel if it is in a critical section for a lower level (e.g., timer
interrupt).

In this question you will write an emulation of this locking scheme in user-space
with the help of POSIX signals. A signal may asynchronously interrupt a thread
in user-space and lead it to execute a user-defined signal handler. Read man 7

signal to get familiar with POSIX signals. See man pkill on how to send a signal
to a process from the terminal.

We define 2 priority levels (p ∈ [1, 2]) and use the signals SIGUSR1 and SIGUSR2 to
represent the corresponding interrupts.

a. Write a function that executes a user-supplied function with the signals SIGUSR1

and SIGUSR2 enabled and initialized to run the given handler functions. Your func-
tion should fulfill the following requirements: 3 P-pt

• Uses sigaction() to setup and enable the signal handlers for SIGUSR1 and
SIGUSR2.
• Configures SIGUSR2 to also disable SIGUSR1 on execution (rule (b) and (c)).
• Runs the user-supplied function.
• Restores the original or default handlers for SIGUSR1 and SIGUSR2 on exit.
• Returns 0 on success, −1 otherwise.

int run_with_signals(void (*runnable)(void),
void (*usr1)(void),
void (*usr2)(void));

b. Write the functions that set the IRQL to a certain level according to the above
rules with the help of sigprocmask(). The functions should return 0 on success, -1
otherwise. 3 P-pt

int set_irql_0/1/2(void);

Total:
10T-pt
11P-pt

3

